

water & sanitation

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

DETERMINATION OF WATER RESOURCE CLASSES AND ASSOCIATED RESOURCE QUALITY OBJECTIVES IN THE THUKELA CATCHMENT

PUBLIC MEETINGS

Presented by: Project Team

Date: 16th and 17th of November 2021

AGENDA

- 1. Welcome and Introductions
- 2. Acceptance of Agenda
- 3. Introduction and Background to the Study
- Classification and Resource Quality Objectives (RQOs) Determination in the Thukela Catchment
 - a. Study Approach (steps undertaken and major outcomes)
 - b. Proposed Water Resource Classes
 - c. Proposed Resource Quality Objectives
- 5. Discussion
- 6. Way Forward
- 7. Closure

What does this mean for your organisation?

Protecting Water Resources **RESOURCE DIRECTED MEASURES**

Middle Thukela River at uThukela weir

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

How does national government determine the level of protection required for a particular water resource?

- Very few water sources that are in a natural state and \succ therefore our water resources require protection.
- Protection is aimed at ensuring current and future use of water resources
- Quantity and quality (overall health) \geq
- Different water resources require different levels of protection. \succ

Chapter 3 - Resource Directed Measures (RDM) which together are intended to ensure the comprehensive protection of all water resources.

REPUBLIC OF SOUTH AFRICA

Protect

NATIONAL WATER ACT

Act No 36 of 1998

(English text signed by the Presite

which text signed by the preside (Assented to 20 August 1995)

Utilise

ACT

WATER IS LIFE - SANITATION IS DIGNITY

ov.za

Www.

Defining the Water Resource Class

- Rivers
- Groundwater
- Wetlands and estuaries.

Each class represents:

- A different level of protection that is required for the water resource, and
- The extent to which water can be used.

	Description of use	Ecological Category	Description of resource
Class I	Minimally used	A-B	Minimally altered
Class II	Moderately used	С	Moderately altered
Class III	Heavily used	D	Heavily altered

Determining Resource Quality Objectives

Releases are good for the downstream ecology

Resource quality objectives provide statements about:

- what the quantity of water should be (water level, pattern, timing)
- what the water quality should be (physical, chemical, biological)
- what the condition of the instream and riparian (river bank) habitat should be
- what the condition of the aquatic (water) animal and plant life should be.

Setting the Reserve

The Reserve is part of the water resource that is under the direct control of the Minister.

It has priority over all other water use.

Reserve must be met before water resources can be allocated to other water users

Classification of Water Resources

Thukela Catchment THE STUDY AREA

Sundays River

Thukela catchment

- Pongola to Mtamvuma Water Management Area (WMA 4)
- Largest river system within the WMA
- Catchment drains an area of 29 040km²
- Two main drainage systems: Upper Thukela and Buffalo rivers

Study Overview: Thukela catchments

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Water Resources

- Thukela River primary river
- Major surface water resource of SA
- Originates on the 3050 m high Mont-aux-Sources plateau in the Drakensberg Mountain Range along the border between Lesotho and the KZN
- a funnel shaped catchment with several tributaries
- discharge into the Indian Ocean on the eastern side of catchment (512 km).
- Major tributaries flowing into the Thukela River from the north include:
 - The Klip River, which passes through Ladysmith,
 - The Sundays River, and
 - The Buffalo River, which rises above Newcastle.
- Major tributaries into the Thukela River from the south include:
 - The Little Thukela River,
 - The Bloukrans River,
 - The Bushmans River, passing though Estcourt, and
 - The Mooi River.
 - Thukela Estuary
 - Aquifers weathered and fractured hard rock systems
- Protected Wetlands

STUDY OBJECTIVES

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Key aims of this study

- co-ordination the implementation of the Water Resource Classification System (WRCS); and
- undertaking the implementation of the RQO determination procedure (7 step process)
- The study was linked to previous Reserves studies and other water resource management initiatives.
- Where the preliminary Reserve was available and relevant, was adopted and where needed and possible within the study mandate, gaps were filled.

Water Resource Classes and RQOs Integrated Process

Reserve Step 1: Confirm, guantify and finalise EWRs Status quo - water resources and systems, water use, economy, river and wetland ecology, water quality problems Step 2: Describe status quo and delineate Integrated and ecosystem services and attributes Units of Analysis (IUA)s and Resource Units (RUs) Step 3: Identify and model scenarios within IWRM, and evaluate with stakeholders Integrated units of analysis (IUAs) spatial units that will be defined as Step 4: Determine water resource class significant water resources Step 5: Determine RQOs (narrative and numerical limits) Resource Units (RUs) and biophysical Step 6: Agree on classes and RQOs with stakeholders nodes identified for different levels of **Ecological Water Resource Requirements** Step 7: Finalise and prepare for gazette (EWR) assessment and setting of RQOs

Wagendrift Dam

Spring Grove Dam

STATUS QUO SUMMARY

Bushmans River at Weenen

Thukela at Bergville DS Woodstock and Driel

Climate change (NIWIS)

Percentage Change in Rainfall

Also considered data/ reports received from stakeholders (Wakkerstroom conservation area)

Percentage Evapotranspiration change

Percentage Change in Stream Flow

Water Resource Systems Analysis Major Dams

Dam name	Sub - catchment	Purpose	Capacity (million m3)
Woodstock	Upper Thukela	Water transfer	373.25
Spioenkop	Upper Thukela	water supply and irrigation	270.64
Qedusizi	Upper Thukela	Flood Control (operated empty)	±200
Zaaihoek	Buffalo	Water transfer	184.63
Ntshingwayo	Buffalo	Water supply and irrigation	194.56
Spring Grove	Мооі	Water Transfer and Irrigation	139.46
Mearns Weir	Мооі	Water Transfer and Irrigation	5.12
Craigieburn	Мооі	Water supply and irrigation	22.47
Wagendrift	Boesmans	Water supply and irrigation	55.90

Minor Dams

River Catchment	Total surface area of small dams (km²)	Total capacity of small dams (million m ³)
Upper Thukela River	19.8	73.2
Upper Thukela River	2.54	9.4
Sundays River	11.28	41.8
Middle Buffalo	12.32	38.2
Blood River	4.93	15.3
Upper Mooi River	21.24	44.17
Lower Mooi River	3.27	6.46
Total	99.9	319.1

Inter-basin Transfers

Scheme	Capacity [#]	Operating rules*
Thukela Vaal Scheme	20 m³/s (1 700 ML/d)	To fill Sterkfontein Dam and support Vaal System.
Buffalo Vaal Scheme	2.16 m³/s (186 ML/d)	To supply Majuba PS and support Grootdraai Dam.
Mooi Mgeni Transfer Scheme (phase 1 and 2)	4.5 m ³ /s (388 ML/d)	To keep Midmar Full and support Mgeni.
Thukela to Mhlathuze scheme (also known as the Middledrift Transfer)	1.0 m3/s (86 ML/d)	Support Mhlathuze by pumping until Goedetrouw Dam > 60%
Lower Thukela Bulk Water Supply Scheme (phase 1)	0.63 m³/s (55 ML/d)	To supply users along North coast (KwaDukuza)

Upper Thukela

Mooi Sundays

Buffalo

Lower Thukela

Sub-systems water availability

	Volumes as per 2015 projection (million m ³ /a)			
Sector	Requirement	Supply	Percentage Supply	
Irrigation	158.8	121.0	76%	
Afforestation	6.8	5.6	82%	
Rural / Urban / Industrial	33.1	33.1	100%	
Transfer	631.2	498.6	79%	
Total	829.9	658.3	79%	

	Volumes as per 2015 projection (million m ³ /a)			
Sector	Requirement	Supply	Percentage Supply	
Irrigation	138.7	115.7	83%	
Afforestation	16.8	16.5	98%	
Rural / Urban / Industrial	23.1	20.5	89%	
Transfer	142.0	112.2	79%	
Total	320.6	264.9	83%	

	Volumes as per 2015 projection (million m ³ /a)			
Sector	Requirement	Supply	Percentage Supply	
Irrigation	66.9	50.2	75%	
Afforestation	16.7	14.2	85%	
Rural / Urban / Industrial	57.1	56.5	99%	
Transfer	31.6	31.6	100%	
Total	172.3	152.5	89%	

	Volumes as per 2015 projection (million m ³ /a)		
Sector	Requirement	Supply	Percentage Supply
Irrigation	33.3	33.3	100%
Afforestation	5.5	5.5	100%
Rural / Urban / Industrial	58.0	58.0	100%
Transfer	37.9	37.9	100%
Total	134.6	134.6	100%

Socio-economics

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Reliance on rivers, streams, and dams as primary source

Employment statistics

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Ecological Infrastructure

Ecosystem Service Sensitivity

Ecosystem Service Sensitivity areas are identified at a high level through two general ways:

 Knowledge of benefits received through ecological infrastructure, and
 Inferring the flow of ecosystem services through the spatial relationship of potential beneficiaries and ecological infrastructure.

Water Provisioning Services provided by network of rivers, dams and impoundments and Strategic Water Source Areas (SWSA) along upper catchment escarpment **Provisioning and regulating services** provided by complex ecosystems. Identified in the Thukela as major wetlands and the Tugela Mouth estuary. Provisioning services (other than water) will play a larger role in rural livelihoods. Regulating services will provide overarching benefits to the wider economy.

Cultural services as indicated by the distribution of protected areas, tourism and community demographics

Socio-economic zones

 Zones of relatively homogenous socio-economic characteristics and dependencies to the services provided by associated aquatic ecosystems

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Socio-economic zones (SEZ)

Rivers

Sub-catchment	Quaternary	Main river	Major Tributaries
V10	V11A-V11M, V12A-V12G, V13A-V13E, V14A-V14E	Upper Thukela	Little Tugela, Putterill, Majaneni, Khombe, Mnweni; Mpandweni, Njongola, Venterspruit, Sandspruit, Mlambonja, Sterkspruit, Situlwane; Klip (and tributaries), Bloukrans (and tributaries)
V20	V20A-V20J	Мооі	Klein-Mooi, Nsonge, Katspruit, Joubertsvlei, Mnyamvubu, Mbalane, Mhlopheni, Umdumbeni, iTshekana, Loza
V30	V31A-V31K, V32A–V32H, V33A–V33D	Buffalo	Ngogo River, Harte River, Thaka River, Slang River, Doringspruit, Ngagane (and tributaries), Kweekspruit, Wasbankpruit, Mbabane, Blood River, Tiyna, Eesteling, Sand, Totololo, Batse, Sibindi, Ngxobongo, Mangeni, Gubazi, Mazabeko
V40	V40A-V40E	Lower	Nadi, Mfongosi, Ngcaza, Manyane, Mamdleni, Nsuze and tributaries
V50	V50A-V50D	Thukela	Mamba, Mambulu, Mpisi, Mati, Otimati, Nembe, Mandeni
	V60A-V60F	Sundays	Dwars, Nkunzi, Wasbank (and tributaries), Nhlanyanga
V60	V60G-V60K	Thukela	Sundays, Sikhehlenga, uMhlangana, Sampofu, Nadi, Mooi, Buffalo
V70	V70A-V70G	Bushman's	Mtshezana, Ncibidwana, Klein Bushmans, Rensburgspruit, uMngwenya, Busone

Present Ecological Status and impacts/ drivers

EWR Site information

Thukela preliminary Reserve: 17 EWR sites:

- upper Thukela Catchment (9);
 Lower Thukela (8).
- A number of rapid Reserve determinations were undertaken between 2002 and 2005 - no reports available for these studies.

Rapid assessments - Ngagane, Horn, Ncandu and Ncone rivers in 2013 and for the Mooi River just upstream of the existing comprehensive site, Thukela_10, in V20E during 2019.

Intermediate assessment - 2017 for the lower Thukela River at Thukela_16, and two additional sites just downstream of the new abstraction weir in quaternary catchment V50D.

Example of additional assessment undertaken to fill gaps THU_EWR22: Klip River in V12A

Component	PES	Importance	REC	Trend	TEC		
Fish	С			Stable	Rationale:		
Macroinvertebrates	С	EI = High ES = Verv	EI = High	EI = High		Stable	Ecological condition driven
HI: Instream	С			Stable	activities. Predominantly		
HI: Riparian	C/D	High		Negative	non-flow and water impacts that require management of upstream activities.		
ECOSTATUS	С	High	B/C		С		

The final step is the quantification of the EWR and include the conversion of the EWR flow data for a TEC of a B/C category to hydraulic conditions at the EWR site (i.e. depths and flow velocities at discharges measured in m³/s) using a hydraulic model. The maintenance and drought flows were examined for July and February. August is the month with the lowest maintenance flow (i.e. base-flow) and February is the month with the highest maintenance flow conditions.

Quaternary Catchment	V12A
River	Klip
EWR Site Co-ordinates	-28.3952; 29.7197
Present Ecological State	С
Target Ecological Category	С
NMAR at EWR site	52.44
Total EWR	13.271 (25.31 %MAR)
Maintenance Low flows	7.085 (13.51 %MAR)
Drought Low flows	2.988 (5.70 %MAR)
Maintenance High flows	6.186 (11.80 %MAR)
Overall confidence	Low to medium

Protected Areas

- ~ 35 protected conservation areas of high biodiversity, cultural heritage, water and landscape importance
- uKhahlamba-Drakensberg Park is the most prominent conservation area designated as a World Heritage Site by UNESCO in 2000;
- Others: Royal National Park, and Weenen and the Nkandla Nature Reserves (V40D). The Qudeni (V40A), Hlatikulu (V40A), Normandien (V31H) and Ncandu (V31F) Reserves are small and do not have major rivers flowing through them.
- Number of ecological sensitive and biological diverse areas such as waterfalls and major gorges that are habitat to a number of rare and diverse species of flora
- Thukela Estuary Marine Protected Area

Groundwater Status

Recharge:

- Average recharge values vary between ~15 and 45 mm·a⁻¹, or between 1 and 6% of MAP
- The bulk (~85%) of the catchment recharge figures of ~3% of MAP (~750 mm) =~25 mm·a⁻¹

Water Levels: monitoring data limited

- Long term Water level trends are of the same order/pattern for period assessed 2007 to 2019
- A clear water table recession is noticeable that took place from 2012 to 2017 due to potential over abstraction and/or limited groundwater recharge due to a drier period (drought between 2014 and 2016).

Contribution to baseflow

- 2009 baseflow values from Reserve study still applicable
- Wetlands identified clear hydraulic connection to groundwater
- Significant land use changes will result in an increase in baseflow (assessment of catchment)

Groundwater use

- Data limited; WARMS under registration
- Estimated total groundwater use in order of 435 Mm³·a⁻¹

Quality

- Generally good best quality in higher rainfall regions.
- TDS = 90 to 200 mg/l; >500 mg/l in lower portions of catchment

Groundwater Priority Areas

GISSVGis Projects11791356_Tugela/MXDI2020/Sep20/1791356_OroundWater_v2.mkd

Wakkerstroom Wetland

- IUA 1 Quaternary Catchment V31A
- Total wetland area mapped 4 101 ha (main wetland ~ 715 ha) Wetland sub-catchment – 20 973 hectares
- Types Main wetland-unchannelled Valley Bottom (others include Floodplain, Valley Bottom, Seep, Depression)
- Impacts: Flow reduction, WWTW inputs

Legen

Wakkerstroom Catchr

Main Rivers

Trajectory of Change (1990 - 2018

Positive Stable

WETLANDS

05 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Land use – water quality impacts

- Coal Mining Ngagane, middle Buffalo and upper Wasbank and Sundays River catchments
- Sand Mining –Buffalo River from the Ngagane River confluence to the lower reaches
- Poor performing wastewater treatment works (WWTWs) and surcharging sewers, solid waste are a major concern and a significant source of nutrient enrichment and high organic load throughout the catchment
- Industrial activity: Ngagane, Lower Thukela, Bushmans, Klip and the Mooi Rivers. Large industrial development in the Newcastle area (Madadeni) impacts on the salinity levels of the Ngagane River and on the downstream Buffalo River.
- Irrigation occurs extensively throughout the Thukela Catchment
- Extensive subsistence agriculture (erosion)

356_TugelaWIXD\2020Uun20\1791356_Landcover_v2.mxd

Water Quality monitoring

WATER IS LIFE - SANITATION IS DIGNITY

Unacceptable

>80

>175

>800

>85

>1.5

>100

>100

<115

>3.0

>20

>0.125

>250

Summary of Water Quality Compliance per Secondary Catchment (number the monitoring sites)

Sub-catchment	Calc	ium (m	g/l)	Chlo	ride (n	ng/l)	Tot	al Diss (n	solved ng/l)	Salts	Elect	rical C (mS	onduc \$/m)	tivity	F	Flouride (mg/l)		Magnesium (mg/l)			
V1 - Upper Tugela	55%	40%	5%	95%	5	%	88	8%	6%	<mark>6</mark> %	36%	9 %	40%	15%		100%		95%	95% 5%		
V2 - Mooi River	80%	20	1%		100%		86%	7%	7	%	85%	5%	5 %	5 %		100%		1	00%		
V3 - Buffalo River	17%	67%	15%	83%	13 %	4%	25%	28%	30%	18 %	19%	8%	46%	27 %	60%	29%	5%	7%	86%	10%	4%
V4/V5 - Lower Tugela		100%			100%			1	100%		8%	8%	17%	67%	100%			100%			
V6 - Sundays River	5%	71%	24 %	71%	14%	14%	5%	30%	15%	50%	3%	24 %	17%	55%	60%	10%	15%	15%	67%	14%	<mark>19%</mark>
V7 - Bushmans River	80%	20	%		100%		80	%	20)%	63	%	25%	13%	80	%	20 %	6	1	00%	
Ideal		10			40			:	200			3	0			0.	7		70		
Acceptable		80			120 350 50				1			100									
Tolerable		80			175			1	800		85				1.5			100			
Unacceptable		>80			>175			>	·800			>8	35		>1.5			>100			

Sub-catchment	Sodiu	um (mg	ı/I)	lon	ised A (m	Ammo g/l)	nia	Nitrate (mg/l)		рН		Orthophospate (mg/l)			Sulphate (mg/l)						
V1 - Upper Tugela		100%		54%	11%	7%	28%	100%		47%	34%	19%	40%	2%	<mark>15%</mark>	43%		100%			
V2 - Mooi River		100%		90%	5%	59	%	100%		36%	41%	23%	91	%	9%			100	%		
V3 - Buffalo River	7% 57%	15%	20%	62%	7%	1%	30%	92%	5%	3%	40%	28%	33%	24%	28%	11%	36%	37%	33%	9%	20%
V4/V5 - Lower Tugela		100%		86	%	14	%	92	%	8%	42 %	33%	25%	8 %	6	25%	67 %		100	%	
V6 - Sundays River	42%	4%	54%	85	%	15	%		1	00%	7%	28%	66%	55%	24%	<mark>3</mark> %	17%	30%	30%	10%	30%
V7 - Bushmans River	-	100%	•	63	%	13%	25 %	100%		62%	38	%	50	%	25%	25 %		100	%		
					·																
Ideal		70			0.0)15				6	≤8	≤8 and ≥ 6.5			0.025			80			
Acceptable		92.5			0.0)44		10		≤8.4	land≥6	i.5		0.0	75		165				
Tolerable		115			0.0)73		20		≤8.4	and ≥ 6	i.5	0.125			250					
Unacceptable		>115			>0.	073			;	>20				>0.125				>250			

Thukela Estuary

Boundaries of the uThukela Marine Protected Area; note that point d is located within the Thukela Estuary is approximately 8.5 km upstream of the estuary mouth (Government Gazette 42478 2019)

Mouth of the Thukela Estuary during low flow period with well-developed sand berm to the right hand side of the image (photo taken 18-10-2019)

Estuary: Description

•

- Flow modification: Medium
 - Pollution: High; largely attributed to agriculture in the catchment and plastic from marine and stormwater sources.
 - Habitat loss: High
- Fishing effort: This has increased from high (17 tons to very high (30 tons. Bait collection also occurs in the estuary.
- Alien fish: Very high
- Downstream boundary: Estuary mouth (31°29'56" E, 29°13'24"S) (Lateral boundaries: Five metre contour from MSL along banks
- Upstream boundary: Approximately 6 km from the mouth

WATER IS LIFE - SANITATION IS DIGNITY

8.7 km - uThukela MPA upstream boundary

Integrated Units of Analysis (IUA)

S:\GISS\Gis Projects\1791356_Tugela\MXD\2020/May20\1791356_IJA_v4_DWS.mxd

Umgeni abstraction work s on Lower Thukela

THE EVALUATION OF SCENARIOS WITHIN THE INTEGRATED WATER RESOURCE MANAGEMENT PROCESS

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Typical water resource system

What is a scenario?

Outcome: Various scenarios of possible ecosystem condition configurations for the entire catchment together with the economical, social and ecological implications

- The process requires a wide range of trade-offs to be evaluated.
- Final outcome of the process is a set of desired characteristics for use and ecological condition for each of the water resources.
- Recommend classes for IUAs for the Minister's consideration

Scenarios, in the context of water resource management and planning are plausible definitions (settings) or factors (variables) that influence the water balance and water quality in a catchment and the system as a whole.

Each scenario is an alternative future condition (change to the present condition). Analysis allows comparison of the implications of one scenario against another = selection of the preferred scenario.

Ecological Scenarios

Present Ecological Status (PES)	Target Ecological Category (TEC)
Ecological Sustainable Base Case (ESBC)	Slightly improved ecological categories
The ESBC scenario, which could permit the maximum water use scenario, requires that the base condition for each water resource is at minimum established as either	The Target Ecological Category (TEC) was also determined as an alternate scenario at the nodes.
a D category or whichever higher category is required to maintain all downstream nodes in at least a D category.	The TEC is based on the ultimate target to achieve a sustainable system both ecologically and economically, considering the PES and Recommended Ecological
However, where the ecological condition requires it, a higher ecological category needs to be set.	Category (REC). Thus, the TEC can be the same as the PES or the REC.
The selected ecological category per IUA for the Thukela catchment is the Present Ecological State (PES) and not a D throughout.	However, it may also be worse than the PES if a system is targeted for development that will impact the present state, or better where a higher level of protection is needed.
Dianning interver	tions assaged

Planning interventions assessed

3 Development levels / time slices:	Development interventions:
Current day (± 2020) Intermediate (± 2030) Long term (± 2045) Challenge: no reconciliation strategy, however the outcomes of this ty will now inform the reconciliation strategy development	 Planned / committed interventions as part of approved reconciliation strategies included. Water requirements current and projected according to Water board / WSA plans. Longer-term infrastructure options added as an alternative to balance water supply.

Resource economic evaluation

- All water users are important: human and ecological
- Value of ecological water requirements
- Practically, the EWR is implemented through several measures
- Value of impact on the economy
- Allocating water required for ecological functioning to household and economic uses is an environmental externality
- Mitigation measures exists for managing the effects of trade-offs (to some extent)

Key considerations to trade-off evaluation

- Key driver is flow (reduced flow/ seasonality loss)
- Modified flows not getting freshets and floods through the systems (habitat not maintained)
- Overall the water resources of the Thukela are over utilised
- A key finding is that ecological requirements cannot be met because of over allocation to transfers and local catchment demands
- For the water resources to remain sustainable some vital decisions will need to be made as some significant trade-offs will be required over the planning horizon assessed; in some IUAs mitigation options are available to reduce trade-offs
- Domestic supply to local households to supply basic needs to be prioritised (vs future transfers)
- Ultimately the estuary (the only open mouthed system on the eastern side of SA; MPA) needs to be maintained this requires a minimum flow and C category
- The evaluation has indicated that medium and long-term planning interventions need to be implemented sooner
- This classification process presents the most feasible option to achieve ecological sustainability with the least economic impact
- There is not enough water in the Thukela

PROPOSED WATER RESOURCE CLASS PER INTEGRATED UNIT OF ANALYSIS (IUA)

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Proposed Water Resource Classes

DETERMINING THE RESOURCE QUALITY OBJECTIVES

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

RQOs are determined for:

- Rivers
- Dams
- Wetlands
- Groundwater
- Estuary

Rivers

Resource Units

GISSIGIS Projects11791356_TugelaMXDI2020tSep2011791356_Resource_Units_v2.mx

Resource Units Prioritisation

The criteria assessed per RU (rating 0 (low), 0.5 (moderate), 1 (high):

- Position of RUs within an IUA (main stem)
- Importance of the RU to users
 - Cultural services to society
 - Supporting livelihoods
 - Strategic requirements
 - Supporting and regulating services
 - Contribution to the economy

• Threat posed to water resource quality for users

• Ecological considerations:

- High Ecological importance and Sensitivity
- EC or PES of A/B
- Freshwater Ecosystem Priority Areas
- Priority conservation plans
- Threat posed to water resource quality for the environment (threat the ecology)
- o Management Considerations
 - PES lower than a D or lower than MC
- o Practical Constraints
 - Availability of data
 - Accessibility for monitoring
 - Safety risk

Prioritised Resource Units

Priority wetlands and Estuary

Sub-components for which RQOs have been set

Rivers and dams:

- Quantity
 - o Low Flows
 - High Flows
- Quality
 - o Nutrients
 - o Salts
 - o Systems variables
 - o **Toxics**
 - o Pathogens
- Habitat
 - o Instream habitat
 - o Riparian habitat
- Biota
 - o **Fish**
 - Aquatic and riparian plant species
 - o Mammals
 - o Birds
 - Amphibians and reptiles
 - o Periphyton
 - Aquatic invertebrates
 - o Diatoms

- Wetlands:
 - o Quality
 - o Quantity
 - and
 - Habitat
 - o Biota

Groundwater:

- o Quantity
 - (abstraction)
- Aquifer water level,
- Water quality, and
- Protection zones

Estuary:

- Dissolved inorganic phosphate
- Water clarity
- Dissolved oxygen
- Toxic substances
- o Pathogens
- Physical Habitat
 - o Intertidal
 - o Subtidal
 - o Substrate type
- Biota
 - o Microalgae
 - o Macrophytes
 - o Invertebrates
 - o **Fish**
 - o Birds

RESOURCE QUALITY OBJECTIVES PER IUA

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

IUA 1: Upper Buffalo River

EVGEDGIEPripediel TVI Mit, Tagwari (4D002/Apr25/1701598_UAL_all-ind

Resource		RIV	DAMS			
Unit	Quantity	Quality	Habitat	Biota	Quantity	Quality
1.1	Х	Х		Х		
1.2					Х	Х
1.3	Х	Х	Х	Х		
1.6	Х	Х	Х	Х		

- Class III
- TEC: B/C
- Groundwater RQOs:
 - Quantity (stress Index and water depth)
 - Quality
 - Protection criteria (water level and quality trends
- Wetlands:
 - Wakkerstroom
 - Groenvlei
 - Quantity
 - Quality
 - Habitat
 - Biota

IUA 2: Ngagane River

/w.dwa.gov.za

- Groundwater RQOs:
 - Quantity (stress Index and water depth)
 - Quality

Х

Protection criteria (water level and quality trends

IUA 3: Middle Buffalo River

- Class III
- Groundwater
 RQOs:
 - Quantity (stress Index and water depth)
 - Quality
 - Protection criteria (water level and quality trends
 - Wetlands:
 - Boschoffsvlei
 - Quantity
 - Quality
 - Habitat
 - Biota

IUA 4: Lower Buffalo River

- Class II
- Groundwater RQOs:
 - Quantity (stress Index and water depth)
 - Quality
 - Protection
 criteria (water
 level and
 quality trends

	RIVERS								
Resource Unit	Quantity	Quality	Habitat	Biota					
3.1	Х	Х	Х	Х					

00300 is Proversi 1791356. TugereMI/D0021Apr2141791356. KiA. ed

IUA 5: Blood River

10050355 Projects171199_TagataMID2027.4pr2017P1055_E/4_51201

	RIVERS									
Resource Unit	Quantity	Quality	Habitat	Biota						
5.1		X		X						
5.2	Х	Х	Х	Х						

- Class III
- Groundwater RQOs:
 - Quantity (stress Index and water depth)
 - Quality
 - Protection
 criteria (water
 level and quality
 trends
- Wetlands:
 - Blood River Vlei
 - Upper Blood wetlands
 - Quantity
 - Quality
 - Habitat
 - Biota

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

IUA 6: Sundays River

- Class III
- Groundwater
 RQOs
 - Quantity (stress
 Index and water
 depth)
 - Quality
 - Protection criteria (water level and quality trends
- Wetlands:
 - Boschbergvlei
 - Paddavlei
 - Quantity
 - Quality
 - Habitat
 - Biota

IUA 7: Upper Mooi River

- Class III
- Groundwater
 RQOs
 - Quantity (stress Index and water depth)
 - Quality
 - Protection
 criteria (water
 level and
 quality trends
- Wetlands:
 - Stillerust
 - Hlatikhulu
 - Quantity
 - Quality
 - Habitat
 - Biota

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

IUA 8: Middle/ Lower Mooi River

- Groundwater RQOs:
 - Quantity (stress Index and water depth)
 - Quality
 - Protection criteria (water level and quality trends
- Wetlands:
 - Scawby, Dartmoor, Melmoth
 - Quantity ٠
 - Quality ٠
 - Habitat ٠
 - Biota ٠

And the second states of the second states of										
		RIV	ERS	DAMS						
Resource Unit	Quantity	Quality	Habitat	Biota	Quantity	Quality	Habitat	Biota		
8.2					X	X		Х		
8.3	Х	Х	X	Х						
8.6	Х	Х	Х	Х						
	WATER	IS LIFE - SAN			Toll Free: 0800	200 200				

www.dwa.gov.za Ioli Free: 0800 200 200

Class III

UA 9: Middle/ Lower Bushman's River

\$108595% Provent179155, Tepela0002121Ap21179155, 30A_ddmid

Deserves that		RIV	'ERS	DAMS					
Resource Unit	Quantity	Quality	Habitat	Biota	Quantity	Quality	Biota		
9.2					X	Х	X		
9.3		Х	Х	Х					
9.4		Х							
9.5a	X	Х	Х	X					
9.5b	Х	х	Х	Х					

- Class III
- Groundwater RQOs:
 - Quantity (stress Index and water depth)
 - Quality
 - Protection criteria (water level and quality trends
- Wetlands:
 - Ntabamhlope
 - Quantity
 - Quality
 - Habitat
 - Biota

IUA 10: Upper Thukela River

- Class III
- Groundwater RQOs
 - Quantity (stress Index and water depth)
 - Quality
 - Protection criteria (water level and quality trends

		RIV	ERS		DAMS							
Resource Unit	Quantity	Quality	Habitat	Biota	Quantity	Quality	Habitat	Biota				
10.1		Х	Х	Х								
10.3					Х	Х		Х				
10.4		Х	Х	Х								
10.8					Х	Х		Х				
10.9	Х	Х	Х	х								
10.10		Х	Х	Х								
10.11	Х	Х	Х	Х								
10.12	х	Х	Х	Х								

IUA 11: Klip River

Class III

Groundwater RQOs

- Quantity (stress Index and water depth)
- Quality
- Protection criteria (water level and quality trends

	RIVERS									
Resource Unit	Quantity	Quality	Habitat	Biota						
11.1		х	х	Х						
11.2	Х	Х	Х	х						
11.3	х	Х	х	х						

STG/ST9Gis Provide (194366_TagelaiMD(2)212HApr2111791356_UA_obland

IUA 12: Middle Thukela River

- Class III
- Groundwater RQOs
 - Quantity
 (stress Index and water
 depth)
 - Quality
 - Protection
 criteria
 (water level and quality
 trends
IUA 13: Lower Thukela River

Class II

- Groundwater RQOs
 - Quantity (stress Index and water depth)
 - Quality
 - Protection
 criteria (water
 level and quality
 trends

	RIVERS							
Resource Unit	Quantity	Quality	Habitat	Biota				
13.2	Х	Х	Х	Х				
13.5	Х	Х	Х	Х				

IUA 14: Escarpment

- Class I
- River RQOs quantity only
- Groundwater RQOs
 - Quantity (stress
 Index and water
 depth)
 - Quality
 - Protection
 criteria (water
 level and quality
 trends)

WATER IS LIFE - SANITATION IS DIGNITY

Habitat

Biota

IUA 13: Thukela Estuary

- Class II
- Groundwater RQOs
 - Quantity (stressIndex and waterdepth)
 - Quality
 - Protection
 criteria (water
 level and quality
 trends)

- Hydrology (low flow and high flows)
- Hydrodynamics (mouth condition and abiotic states)
- Water quality (salinity, dissolved inorganic nitrogen, dissolved inorganic phosphorus, nutrients, water clarity, dissolved oxygen, system variables, toxic substances. Pathogens)
- Physical Habitat (intertidal habitat, subtidal habitat, substrate type)
- Biota (Microalgae, Macrophytes, Invertebrates, Fish, Birds)

EXAMPLES OF WHAT YOU WILL SEE IN THE DRAFT GAZETTE

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

List of Tables in the Draft Gazette

- Table 1: Proposed Water Resource classes for the Thukela catchments
- Table 2: Integrated Units of Analysis delineated for Thukela catchments
- Table 3: Resource Units delineated for the Thukela catchments
- Table 4: Summary of Water Resource Classes per Integrated Unit of Analysis and Ecological Categories – Thukela catchments
- Table 5: Integrated Unit of Analysis and Resource Units with the indicated sub-components of water resources for which Resource Quality Objectives are proposed
 - Tables 6 to 20: Rivers and Dams
 - Table 21: Wetlands:
 - Tables 22 36: Groundwater:
 - Table 37: Estuary

- Figure 1: Proposed Water Resource Classes for the Thukela catchments
- Figure 2: Integrated Units of Analysis delineated for the Thukela catchments
- Figure 3: Resource Units of the Thukela catchment

RESOURCE UNITS SELECTED WITH PROPOSED RESOURCE QUALITY OBJECTIVES

Table 5 provides:

(i) the listed Integrated Unit of Analysis in the Thukela catchments for which Resource Quality Objectives are proposed;

(ii) the selected Water Resources (Rivers, Wetlands, Dams and Groundwater) for which Resource Quality Objectives are proposed and

(iii) reference to subsequent tables that list the proposed Resource Quality Objectives per selected

sub-components (quantity, quality, habitat, biota or groundwater) per Resource Unit.

		RIVERS				DAMS							
Integrated Unit of Analysis	Resource Unit	Quantity	Quality	Habitat	Biota	Quantity	Quality	Habitat	Biota	List of applicable tables with proposed Resource Quality Objectives (RQOs)	Ground Water tables with proposed RQOs	Wetlands tables with proposed RQOs	Estuary table with proposed RQOs
1: Upper1.11: Upper1.2Buffalo1.3River1.31.6	1.1	xx	x	x				Table 6 (Rivers		Table 21			
			~							and Dams)		(Wetlands)	
	1 2					x	x			Table 6 (Rivers			
	1.2									and Dams)	Table 22		
	1.3	.3 X X	vv	 	x					Table 6 (Rivers	(Groundwater)		
			^	^						and Dams)			
	1.6	x	x	v						Table 6 (Rivers			
				^	^					and Dams)			

Ngagane from Ntshingwayo Dam to confluence with Buffalo

V31G, K (May 13_EWR 3)

Component	Sub- component	RQO	Nur	Numerical Limit/ measure		
		EW/P maintananaa low and draught			Maintenance	Drought
		flowe:			Low flows	Low flows
		nows.			(m ³ /s) flows	(m ³ /s) flows
		Ngagane River at the EWR site			m ³ /s)	m³/s)
		May13_EWR3 (-27.819, 29.987) in	Maintenance and drought flows required	Oct	0.366	0.091
	Low flows	V31K		Nov	0.560	0.068
		NMAR = 160 12 $\times 10^{6} m^{3}$		Dec	0.762	0.051
Quantity		NMAR - 100.12 x10 III		Jan	1.138	0.527
		TEC=C/D category	Pivor	Feb	1.541	0.711
		The maintenance law flows and		Mar	1.269	0.587
		drought flows must be attained to		Apr	0.928	0.433
		support the upstream and downstream aquatic ecosystem of the Ngagane River to the confluence with the Buffalo River		May	0.539	0.202
				Jun	0.326	0.112
				Jul	0.243	0.123
				Aug	0.234	0.119
				Sep	0.273	0.111
					Freshet	Davs
	Freshets				(m³/s)	Dayo
		EWR freshets to be released from Chelmsford Dam (V3R001) and	Freshets required for the	Nov	10.0	2
				Dec	12.0	2
		Horn River	Ngagane River	Jan	15.0	2
				Feb	20.0	2
				Mar	10.0	2

Component	Sub-component	RQO	Indicator	Numerical Limit/ measure	
Quality		Nutrient levels should not deteriorate and	Orthophosphate as P	≤0.01 mg/L (50th percentile)	
	Nutrients	should support aquatic ecosystem and sustain the present ecological state (PES B)	Total Inorganic Nitrogen (TIN)	≤0.5 milligrams per Litre (mg/L) (50th percentile)	
	Salts	Total Dissolved Solids needs to be maintained to support aquatic ecosystem and sustain the present ecological state (PES B)	Total Dissolved Solids	≤120 milligrams per Litre (mg/L) (95th percentile)	
	Pathogens	The presence of pathogens should not pose a risk to human health	Escherichia coli	≤130 Colony forming units per 100 millilitres (CFU/100 mL)	
Biota	Fish	Flow and water quality sensitive Fish species to be maintained in a PES B	Barbus (Enteromius) anoplus (BANO)	During survey in all flow habitat classes all species present (BANO, ANAT and AMOS).	
		ecological category.	Amphilius natalensis (ANAT) Anguilla mossambica (AMOS)	BANO and ANAT ≥ 5 individuals per species	
	Aquatic invertebrates		Baetidae 2 sp Perlidae	At least 2 biotopes sampled: assemblages to be $\geq A$ abundances	
		Flow and water quality sensitive macroinvertebrate assemblages to be maintained.	Tricorythidae	South African Scoring System (SASS) 5 scor ≥180	
		Macroinvertebrate assemblages must be maintained within a B ecological category or improved upon	Hydropsychidae I sp Leptoceridae	Average Score per Taxon (ASPT): ≥6.0 Macroinvertebrate Response Assessment	
			Ancyidae Psephenidae	Index (MIRAI) Ecological Category: B (80%- 90%)	
	Diatoms	Ecological water quality should be	Specific Pollution Sensitivity Index (SPI)	SPI: ≥15	
			Percentage pollution tolerant values (%PTV)	PTV: 20% to < 40%	

Way Forward

- Publish draft classes and RQOs notice for public comments - 60 days
- Address public comments and update notice for Minister's approval
- Gazette final notice containing Classes and RQOs

Thank you

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za